Membrane-bound Fas (Apo-1/CD95) ligand on leukemic cells: A mechanism of tumor immune escape in leukemia patients.
نویسندگان
چکیده
There is evidence from bone marrow transplantation that T cells may be involved in the immunologic control of leukemia. But many patients relapse despite a potent graft-versus-leukemia effect mediated by allogeneic T cells. The expression of the FasL protein has been suggested as a mechanism of tumor immune escape. We, therefore, evaluated the capacity of leukemic cells from patients with acute or chronic myelogenous leukemia to escape the allogeneic or autologous immune response by bearing the FasL molecule. Although almost all leukemic cells express the 37-kD form of FasL, only 54% of acute myeloblastic leukemia and 27% of chronic myeloid leukemia (CML) cells bore a FasL with killing properties, as assessed by the ability of leukemic cells to cause the apoptosis of a Fas-sensitive target cell line or autologous activated T cells in 3 tested leukemic cases. Experiments with a recombinant Fas-Fc molecule confirmed the role of Fas/FasL in leukemic-mediated cell death. Only CML leukemic cells from certain individuals contained the 26-kD truncated form of FasL. Thus, myeloid leukemic cells from some, but not all patients can set up a mechanism of immune escape involving the Fas/FasL pathway. This leukemic escape may have implications for patients eligible for adoptive cellular immunotherapy.
منابع مشابه
Tumor immunity in perforin-deficient mice: a role for CD95 (Fas/APO-1).
CTL and NK cells use two distinct cytocidal pathways: 1) perforin and granzyme based and 2) CD95L/CD95 mediated. The former requires perforin expression by the effectors (CTL or NK), whereas the latter requires CD95 (Fas/APO-1) expression by the target. We have investigated how these two factors contribute to tumor immune surveillance by studying the immunity of perforin-deficient mice against ...
متن کاملDrug-induced apoptosis is associated with enhanced Fas (Apo-1/CD95) ligand expression but occurs independently of Fas (Apo-1/CD95) signaling in human T-acute lymphatic leukemia cells.
Induction of apoptosis is considered to be the underlying mechanism that accounts for the efficiency of chemotherapeutic drugs. It has recently been proposed that induction of Fas ligand (FasL) expression with subsequent autocrine and/or paracrine induction of cell death through binding to the Fas (Apo-1/CD95) membrane accounts for chemotherapy-associated apoptosis. In the present study, we ana...
متن کاملAddressing the "Fas counterattack" controversy: blocking fas ligand expression suppresses tumor immune evasion of colon cancer in vivo.
Fas ligand (FasL/CD95L) is a transmembrane protein belonging to the tumor necrosis factor superfamily that can trigger apoptotic cell death following ligation to its receptor, Fas (CD95/APO-1). Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of antitumor immune effector cells-the "Fas counterattack." However, the ability of FasL to mediat...
متن کاملSynergistic induction of the Fas (CD95) ligand promoter by Max and NFkappaB in human non-small lung cancer cells.
Fas (CD95/APO-1) ligand is a member of the Tumor Necrosis Factor family and a potent inducer of apoptosis. Fas ligand is expressed in activated T cells and represents a major cytotoxic effector mechanism by which T cells kill their target cells. Activation-induced Fas ligand expression in T cells is under the stringent control of various transcription factors, including nuclear factor kappaB (N...
متن کاملSemaphorin3A signaling controls Fas (CD95)-mediated apoptosis by promoting Fas translocation into lipid rafts.
Semaphorins and their receptors (plexins) have pleiotropic biologic functions, including regulation of immune responses. However, the role of these molecules inside the immune system and the signal transduction mechanism(s) they use are largely unknown. Here, we show that Semaphorin3A (Sema3A) triggers a proapoptotic program that sensitizes leukemic T cells to Fas (CD95)-mediated apoptosis. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 94 9 شماره
صفحات -
تاریخ انتشار 1999